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A MULTIGRID METHOD FOR ELLIPTIC GRID GENERATION
USING FINITE VOLUME MEHTOD

SHENG LUO, CHAOQUNLIU, HAUSHAN
Department. of Mathematics, University of Texas at Arlington,
Box 19409, Arlington, TX, U.S.A

1. INTRODUCTION

Elliptic and hyperbolic partial differential equations are, at the heart of most
mathematical models used in engineering and physics, giving rise to extensive
computations. Often the problems that one would like to solve exceed the
capacity of even the most powerful computers. On the other hand, the time
required is too great to allow inclusion of advanced mathematical models in the
design process. Also iterative processes for solving the algebraic equations
arising from discretizing partial-differential equations are stalling numerical
processes, in which the error has relatively small changes from one iteration to
the next. The computer grinds very hard for very small or slow real physical
effect with the use of too-fine discretization grids. In this case, in large parts of
the computational domain, the mesh size is much smaller than the real scale of
solution changes. In particular, convergence of iterative methods for elliptic grid
generation based on non-linear grid generation equations is extremely slow.

For the above reason, the authors have worked on the improvement of the
non-linear elliptic grid generation. In this paper, the Laplace equation and the
algebraic transformation were presented for the domains in 2D and 3D physical
space. The second order finite difference scheme was used for the discretization
of the grid generating equations. The linear system is solved by the ADI method
and the convergence was accelerated by the multigrid FAS scheme. The
performance characteristic of the algorithm was discussed and illustrations were
made.

2. 2D AND 3D ELLIPTIC GRID GENERATION

The elliptic grid generation method used in this paper is based on the use of a
composite mapping [1]. It is a composition of an algebraic transformation and an
elliptical transformation based on Laplace equations. The algebraic
transformation is a differential one-to-one mapping from computational space
onto a parameter space. The parameter space and the computational space are
unit squares. The algebraic transformation will only depend on the prescribed
boundary grid point distribution. The control functions are defined based on the
algebraic transformation. The elliptical transformation is a differential one-to-one
mapping from parameter space onto the physical domain. The elliptical
transformation depends only on the shape of the domain and is independent of
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the prescribed boundary grid point distribution. The composition of these two
mappings defines the interior grid point distribution and is a differentiable and
one-to-one for 2D domains and surfaces and, probably, also for 3D domains.

2.1 Grid Generation Equations

For 2D problem, the grid generating system of elliptic partial differential
equations are as follow:

Px,, + 2Qxý, + Rxo, + Sx, + Tx, = 0 (1)

Where
P = (x,1 ,Xo ), Q = -(x , x, ), R = (x4 ,,x ),

S=PPF + 2QP'2 + RP22, T I + 2Qp22 + RP2 (2)

The control functions are given by

and the matrix T is defined as T = s s 7L t t 17

The six coefficients of the vectors
P = (P, p 2 )2 p = (p p2 )T andP22 = (P' p 2 )T are called the control

functions. The two algebraic equations that define the transformation are given
by

s = sE (c)(1 - t) + SE, (ý)t (4)

and t tEj (1/)(1 -S) + tE, (77)S (5)

The 3D grid generating system is too complicated to describe here. It can be
found in [1].

2.2 Discretization Method
Let's use 2D case as an example and consider a uniform rectangular grid of

size (N + 1)(M + 1) defined as ý,,j = i = i/N, 7iij =ij, = j M,
i = 0...N; j = 0...M.
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Let Xi., be prescribed on the boundary of this grid. We are going to compute
Xi . in the interior of the computational grid based on the solution of the

Poisson system defined by Eq. 1.

The solution of this system of nonlinear elliptical equations is obtained by
Picard iteration.

pk-lxk + 2 Qk'lxký' + Rk-lXk-qq + Sk-lxk4 + lrk-lxkn = 0,

Where, pk-i = (Xk- I, Xk-I ), Qk-I = (xk-1 , xk-l1 ), Rk-! = (xk-I , xk-I ),

sk-I = pk-I it + 2Qk-I PI12 + Rk-I pi22, zk-I = pk-I p211 + 2Qk-I p2 12 + Rk-I p222.

The six control functions P'11, P' 12 , P'22, P211, p212, p222 are computed

according to the equations given by Eq.2 and by applying second order central

difference schemes for the discretizations of s•,s ,,, , ,t ,tn,
t 4 7 ' ý, S ri, s • t , t,7

The arc length normalized variables (sij ,tij) at the boundary are computed
as follows:

"* Compute the distance (1) between succeeding points at the each boundary.
"* Define the length of the edge (L) along each boundary as the sum of the

distances between succeeding points along that boundary.
"* The normalized distance (d) between succeeding points is then given by IlL.
"* The arc length normalized variables sij and tij at the boundary are defined

by
So 0J = 0, SN~J = 1, j 0 O... M , ti'o = 0, ti'u 1 i = 0O... N,

and si,0 = si-i.o + di 0, SiM = si-iM + diM , i = I...N9

to,j = to0 j-1 + d 0 ,j, tN,j = tN,j_! + dN,j, j = 1...M.

The arc length normalized variables (s -", ti 1 ) in the interior of the grid are
computed according to the algebraic straight-line transformation given by Eq.(3)
and (4). Simultaneously solving the two linear algebraic equations yields
(si,j,ti,1 ) •

Si,j = SiO(1-tij) + SiMti'j, tW, =to(I--Sj ) +tN,jSi,j,

at each node (i, j)e (1...N - 1;1...M -1)

The steps for an iteration to improve the current approximation xk-1 is as
follows:

* The coefficients Pk-, Qk-I R k-1 S k-, T k-1 are computed by applying central
difference schemes for the discretization of xV and x, . The six control
functions remain unchanged during the iterative process.
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* Using central difference schemes to discretize x,, x qxý , X . The

discretization of the mixed derivative using central difference schemes is done in
a way described in [2].
* We then obtain a linear system of equations for the unknowns

xk, j = 0.. .N; j = 0.. .M with Dirichlet boundary conditions. A Multigrid solver
is used to solve this linear system. The solver is called twice to compute the two

Xk Ykcomponents xj and ij

The initial approximation x0 is obtained by an algebraic grid generation. The
above iterative process is repeated until a required approximation to the solution
has been obtained.

The discretization method for 3D problem can also be found in [1].

3. FINITE DIFFERENCE AND FINITE VOLUME METHOD

In this paper, the second order finite difference scheme was used to discretize
the equations and the boundary conditions. For 2D problem, Eq. (1) becomes:

P xi+l1 J -- 2xij + Xi-IJ + 2Q+ - x'-"j - X +"-x 1i'j- --•i• + +•i ~l'J'l+ xi-IJ-1 + 2x•i'
Ax2 2AxAy

+ R xi.j+1 - 2xi + x 1 -- S x+l'J - + +T x1'j+l - = 0

Ay 2  2Ax 2Ay
Grids obtained by the nonlinear elliptic Poisson grid generation system

defined by Eq.(1) are grid folding free and have an excellent interior gird point
spacing distribution. However, the computed grids are in general not orthogonal
at the boundary, but we need grids to be orthogonal at the boundary, especially
for Navier-Stokes computations. The orthogonality of the gird in a boundary
layer is often desired.

The s coordinate in parameter space P satisfies the linear second-order
elliptic equation (Ja"s4 + Ja12s ) +(Ja12 s + Ja 22s) =0 . The t
coordinate is obtained in the same way. A finite-volume ce7l-centered nine-point
stencil approach is used to obtain the discretized equations for boundary
orthogonality of 2D problem and seven-point stencil for that of 3D problem.

4. MULTIGRID TECHNIQUE

As we know, Gauss-Seidel relaxation for solving Eq.6 typically stalls after a
few iterations. This is because Gauss-Seidel, though effective for high-frequency
errors components, has very little effect on low-frequency components. Multigrid
capitalizes on this "smoothing" property of Gauss-Seidel by visiting coarser grids
to resolve smooth errors. But the regular multigrid correction scheme is only
valid for linear problem. In order to accommodate the nonlinearities in Eq.6, we
applied the Full Approximation Scheme (FAS) version of multigrid with bilinear
interpolation and full weighting of residuals and approximations.
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4.1. Full Approximation Scheme (FAS)

In non-linear problem, the difference LhUh -Lh U h can no longer be replaced
by LhVh, where vh is The truncation error on fipe grid. Hence, we ix44oduce a new
coarse grid variable U2h defined as U2h = Ih Uh + V2h , where Ih represents a
so-called restriction operator which interpolates fine grid solution variables to the
coarse grid and V2 h is the truncation error2hOpn coarse grid. The coarse grid
equation can be written as L2hU2h--t 2 lh U = -i 2hrh, JhI represents the
restriction operator which transfers residu&41s from fine to coarse grids and rh is
the residue on fine grid. The operators Ih may in principle be different from
each other.

It is useful to rewrite the above equation as:

--2h-- _ 2h
L2h U2h = S2h , where S 21 = L2hIh Uh --Ih rh

In this form, the coarse gird equation is seen to take on a similar structure to the
original fine grid equation, with a modified source term. This enables us to use
similar techniques for solving both the coarse and fine grid problems. Once the
coarse grid equations have been solved, either exactly or approximately, the fine
grid variables are updated as:

-new -- old h new -2h -old
h =Uh -+-2 h(U2h -lIh Uh )

- new - old h h •
which can also be written as Uh = Uh + 12hV2h. 1' is called interpolation

operator.

The FAS method is carried out in the following steps. [4]

* Restrict the current approximation and its fine-grid residual to the coarse grid:
r= 1 = fh - L, (Vh)) and Vzh = 1h V, where fhis the right-hand term ofnonlinear equation system on fine grid.

"* Solve the coarse-grid problem L2 h (U2h) = L2 h (V2h) + r2h.

"* Compute the coarse-grid approximation to the error: e2h = U2h - V 2h.

"* Interpolate the error approximation up to the fine grid and correct the current
fine-grid approximation: vh vh + I2he 21,, where h: the mash space on finest
grid, 2h: the mesh space on coarse grid.

4.2. The Solver for Linear Systems

The linear systems were solved by applying alternating direction implicit
methods (ADI). The basic idea for ADI method is as follows: a complete
iteration consists of two scans. The first scan goes from the smallest index
number to the largest one from one row to the other followed by the same in the
column direction. The second scan is almost the same as the first one, except for
going from the largest index number to the smallest one. This method can
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increase the convergence rate at the cost of some complication in the
computational algorithm. [3]

To illustrate the advantage of FAS method, the author compared ADI method
with FAS and ADI method.

5. ILLUSTRATIONS

5.1. For 2-D Case

In Fig. 2(a), the body-fitted C-grid around a NACA 0012 airfoil is displayed.
The close-up of mesh near the airfoil is shown in Fig. 2(b) where grids are
orthogonal at the boundaries. The mesh is clustered near the wall in the wall-
normal direction (17) as well as in the vicinity of the leading and trailing edge of
the airfoil in the direction parallel to the wall (4). The grid contains 769 points
in the 4 direction and 129 points in the 17 direction.

As seen in the figures, the grid generated is grid folding free and the interior
grid point distribution is a good reflection of the prescribed boundary grid point
distribution. The initial grid is obtained with algebraic grid generation and is
required as the initial solution for the non-linear elliptical Poisson system. The
final grid is independent of the initial grid. The quality of the initial grid is
unimportant and severe grid folding of the initial grid is allowed.

Fig. 3. shows the Log (residue) vs. Work Units of the ADI and the multigrid
method for 2D case. From the figure, the multigrid method reduced the residue
significantly, which is faster than the ADI method for the above problem. The
multigrid method saves at least 23 times in CPU times (or work unit) than the
ADI method.

5.1. For 3-D Case

The geometry of the delta wind, taken from the experimental work of Rieley
& Lowson (1998), is shown in Fig. 4. The sweep angle denoted by A is 85' and
the leading-edge angle denoted by c" is 30'. The chord length is taken as the
characteristic length L, such that the non-dimensional chord length is c = 1.OL.
The non-dimensional thickness of the delta wing is h = 0.024L.

In Fig.5, the grids around the delta wind are being shown. The mesh is H-type
in the meridian section and C-type in the cross section. The grids are orthogonal
on the delta wing surface. The meshes are 129 X 65 x 65, where the sequence of
numbers is corresponding to the axial, the spanwise and the wall-normal
direction, respectively.

Fig. 6. shows the Log (residue) vs. Work Units of the ADI and the multigrid
method for 3D case. Great improvement of convergence speed can also been
seen from this figure, although it is not as apparent as that in 2D case. The
multigrid method saves at least 2 times in CPU times (or work unit) than ADI
method.
6. CONCLUSIONS
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The Multigrid method is applied to elliptic partial differential equations. As
seen from the illustrations, convergence of the 2D and 3D elliptic grid generation
problems is greatly improved by using the multigrid solver, although
convergence of three dimensional elliptic grid generation is still not fast enough
and need to be improved. Second order central difference schemes used for
discretizing the grid generation equations are close to the exact differentiation
and provide better grid point distribution.
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FIG. 1. Transformation from computational (ý,71) space to a domain D in

Cartesian (x, y) space.

(a) overview of the grids (b) grids near airfoil surface

FIG. 2. C-grid around a NACA 0012 airfoil
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Comparison of Log (residue) vs. Work Units

ofADI and multigrid method
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